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The short-range behavior of the pair correlation function in a dense one- 
component plasma (jellium) is investigated. As an intermediate step, the 
short-range behavior of the classical pair correlation function is obtained. 
Actually, although the temperature and the density are assumed to be such 
that the thermodynamic properties are almost classical, quantum mechanics 
(tunnel effect) always dominates the pair correlation function at short 
distances. The quantum pair correlation function is calculated by treating 
the many-body quantum effects by a perturbation theory, and by using a 
semiclassical approximation based on path integrals. The results are applied 
to the computation of the nuclear reaction rate in dense stellar matter 
(pycnonuclear reactions). 

KEY W O R D S  : One-component plasma ; pair correlation function (radial 
distribution funct ion) ; quantum effects ; pycnonuclear reactions. 

1,  I N T R O D U C T I O N  

In this paper,  we investigate the short-range behavior o f  the pair correlation 
funct ion for the fluid phase o f  the one-component  plasma. This model,  also 
referred to as " je l l ium,"  a system of  identical particles o f  charge Z e  and mass 
M embedded in a uniform neutralizing background of  opposite charge, has 
been shown to have well-behaved thermodynamic  properties. (1~ Jellium is 
believed to provide a good description o f  certain stellar interiors, where the 
nuclei are the particles and the degenerate electrons form the background.  
The knowledge of  the pair  correlation function at short distances is o f  im- 
portance,  because it governs the rate o f  nuclear reactions, which is propor-  
t ional to the probabil i ty that  two nuclei approach  one another  at a distance 
o f  the order o f  the nuclear radius. In  a dense plasma, strong screening effects 
increase the pair  correlation function, and the rate o f  nuclear reactions is 
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enhanced; the calculation of the enhancement factor has been of concern to 
several authors. ~2-5~ 

The state of the plasma is defined by the number density p and the 
temperature T, or equivalently the ion-sphere radius a = (3/47rp) 1/3 and the 
two-body average classical distance of closest approach 13(Ze) 2 (t3 = 1/kT, 
where k is Boltzmann's constant). The classical properties depend on the 
dimensionless parameter P = ~(Ze)2/a. We shall be primarily interested in 
the high-density regime 1 < P < 155 (for I' > 155 the system becomes 
solid(~)). Throughout  this paper, we shall assume the thermal de Broglie 
wavelength t = (27rh2/MkT) ~12 to be small compared to the ion-sphere radius 
a. Note that the simultaneous requirements I/a < 1 and I" > 1 imply that 
the temperature must be neither too low nor too high. The assumption that 
,~ is small ensures that the thermodynamic properties of the plasma can be 
essentially computed by classical statistical mechanics; small quantum cor- 
rections to the thermodynamic properties (7) can thereafter be obtained by a 
Wigner-Kirkwood expansion (8~ in powers of  h ~. The Wigner-Kirkwood ex- 
pansion can also be used for computing quantum corrections to the pair 
correlation function (9) g(r), if the distance r is large enough. However, for 
the small values of r in which we are interested here, the pair correlation 
function is governed by quantum effects, which are no longer corrections and 
cannot be obtained by a Wigner-Kirkwood expansion. This is particularly 
evident in the extreme case of zero distance, where the classical Boltzmann 
factor exp(-~Z2e2/r) gives a vanishing classical pair correlation function, 
although quantum tunneling makes the true pair correlation function finite. 

When two particles 1 and 2 are at short distance r from one another, the 
Wigner-Kirkwood expansion for g(r) fails because its coefficients involve 
derivatives of the potential, the direct interaction part (Ze)2/r of which 
becomes singular. The other terms in the potential (interactions of 1 and 2 
with other particles, and interactions of other particles with one another), 
however, remain regular, of order (Ze)2/a, for all the configurations that have 
a nonnegligible statistical weight. Therefore, one is led to devise a method of 
approximation that may be considered as a modified Wigner-Kirkwood 
expansion adapted to the present case. In zeroth order, particles 1 and 2 are 
treated by quantum statistical mechanics, whereas all other particles are 
treated by classical statistical mechanics. Corrections to this zeroth-order 
approximation are thereafter expanded in a systematic way in powers of h. 
This approximation scheme allows the quantum pair correlation function to 
be expressed in terms of classical quantities. It is therefore possible to use the 
known results about the classical system, obtained by computer simula- 
tion (1~ or through the hypernetted chain approximation. (~2-15~ 

The classical pair correlation function will be studied in Section 2. In 
Section 3, the calculation of the quantum pair correlation function will be 
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approximately reduced to a two-body problem. In Section 4, this two-body 
problem will be solved, through the use of the semiclassical approximation 
derived from the path integral formalism. Exchange terms will be neglected; 
a partial justification for this neglect will be given in Section 5. Finally, the 
results and their application to the problem of the nuclear reaction rate 
enhancement will be discussed in Section 6. 

2. C L A S S I C A L  P A I R  C O R R E L A T I O N  F U N C T I O N  

In this section, as an introductory step, we study the short-range behavior 
of the classical pair correlation function. 

The potential energy for N particles of charge Ze, plus the background, 
in a volume f2, is 

dr 
V(r~ .... , rN) = ~ (Ze)2 (Ze)2p ~ ir ' _ rl 

1<i <./~<N r~ j  �9 

_ ( Z e )  2 

F12 

dr& '  
- -  + ~ 2 ~ p 2 f  i r _  r, I 

- - -  + W(rl,..., r~) (0  

W is the sum of all interactions except the one between particles 1 and 2. For 
the evaluation of the classical pair correlation function go(r12 ) at small separa- 
tions r12, we can choose both rl and r2 to be small, and the contribution of W 
to the Boltzmann factor can be replaced by its Taylor expansion with respect 
to r~ and r2; grouping equivalent terms gives, to second order in r~ and r2, 

exp(-pV)  = exp[ -fl(Ze)2] exp[-/3W(O, O, ra ..... rN)] 
[ r12 J 

OW ~ O2W 
• 1 - / 9  -~ l " (h  + r2) 2 Or~ ~rl : (r lh + r2r2) 

+ g -~r~'(r~ + r~) +... (2) 

where the derivatives of W are taken at the configuration-space point 
(0, 0, ra ..... r~). Taking into account the invariance of W(0, 0, ra ..... rN) under 
rotations around the origin, we find for the pair correlation function 

N(N 1) 
f exp(-/3V) dra .-. drN 

exp[-fl(Ze)21 N ( N -  l) ( exp [ - f l  Vv'(O~ O, rN)] L q~ J ~ Q  j r~ .... , 

[ ~ -~ ~ t a w \ ~  ] 
x 1 - (A1W)(r~ 2 + r2 2) + ~'~r~} (r~ +r2)  2 +.. .  dra. . .dru 

(3) 
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where Q is the configuration integral 

Q = f exp(-f i  V) dr~ dr2 ... drN (4) 

Several useful remarks can be made about the quantities appearing in (3): 
(a) Let us put 

U(rl, r3,..., r~) = W(rl, r l ,  r3 ..... rN) (5) 

U is the potential energy of a system S' made up of one charge 2Ze at h ,  
N - 2 charges Ze at r3 .... , rN, and a neutralizing background, in a volume f~; 
the configuration integral of this system is 

Q' = I exp[- /3U(h,  r3 ..... ru)] dr1 dr3 ... dru 
! 

( exp[-flW(0, 0, ra .... , rN)] dra ." drN (6) f~ 
d 

and 

Q,/Q = ~-1  exp[/gF(0, N) -/3F(1, N - 2)] (7) 

where F(M, N) is the excess free energy of a mixture of M charges 2Ze and 
N charges Ze. 

(b) The Laplacian 

N 

A1 W(0, 0, r3 ..... rN) = -4w(Ze) 2 ~ 3(rj) + 47r(Ze)2p (8) 
] = 8  

is multiplied in (3) by exp(-/3W), which vanishes at rj = 0. Therefore, only 
the background term 4,r(Ze)2p of (8) contributes to (3). 

(c) The term involving the gradient ~ W/~rl in (3) can be evaluated as 
follows. The mean square force acting on the particle 1 of the system S' is 
obtained by integration by parts: 

1 ~U 2 
Q, f exp[-[JU(rl, r3 ..... rN)](~--~-t) drl dr3 ... drN 

I f  = ~ exp(-jgU) A1Udr ~ drs ... drN = 8~r(Ze)2pkT (9) 

since only the background term 8~r(Ze)2p ofA~ Ucontributes to exp(-/3 U) A1 U. 
Using (5) in (9), we find 

~W 2 = ~ 0 " ' /~W\2 
~ (-b~-r~) ~ ~ f exp[-fiW(0, , r3 ..... rzolt-b-~)dra...dru 

= 27r(Ze)2pkT (10) 



Pair Correlat ion Funct ion in a Dense Plasma 361 

Using the above remarks, we obtain from (3) 

or equivalently, to order r 2, 

[ + +1 gc(r) = exp - - - - 7 - - -  

where 

C = fl[F(0, N) - F(1, N - 2)J (13) 

Since (12) results from the expansion (11), Eq. (12) will be valid if 

fi(Ze)2pr 2 << 1 or equivalently F(r/a) 2 << 1 (14) 

The r 2 contribution to the potential of  mean force in (12) can be given 
a simple interpretation if we assume the background to be a large sphere 
centered at the origin and the particles l and 2 to be located at the symmetric 
points r/2 and - r / 2 ;  then the sum of the interaction energies between each of 
these particles and the background 2 depends on r as rr(Ze)20r ~/3. 

An evaluation of the constant C has been made by DeWitt et al., ~ using 
computer  simulation results (~o~ for the one-component plasma pair correlation 
function g~(r). Computer  results unfortunately are not available for those 
small values of  r that make (12) valid [because the computed go(r) (l~ is 
indistinguishable from zero in that region], and an extrapolation method 
had to be used. However, C can now be computed from (13), since recent 
numerical results on mixtures have been obtained by Hansen et al. (12,~5~ 
They have given a good approximation for the excess free energy F(M, N), 
which is, in our notation, 

~ F ( M , N ) =  Nfo[I~( N ~,~f2M)l/3] + Mfo[F( N +  2M N ) 1/a25/3] (15) 

where kTfo(F) is the excess free energy per particle of  a one-component plasma 
of  charges Ze; the computer.results (u~ for f0 are well fitted in the range 
1 < P < 155 by (z6'12~ 

fo(F) = -0.896434F + 3.44740P 1~ - 0.5551 In F - 2.996 (16) 

2 DeWitt et al. ~4~ have derived an expression similar to (12), with, however, a coefficient 
of r ~ that is twice ours. We believe they have violated the symmetry of the problem by 
assuming the background to be a sphere centered at one of the two particles rather than 
at their center of mass. 
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Using (15) and (16) in (13), we obtain 

C = 2f0(P) - fo(25/aF) 

= 1.053117 + 2.29311' ~j4 - 0.5551 In P - 2.35 (17) 

in reasonable agreement with the more uncertain values obtained by an ex- 
trapolation of the computer results for go(r). 

3. Q U A N T U M  PAIR C O R R E L A T I O N  F U N C T I O N  

In quantum statistical mechanics, the formal expression for the pair 
correlation function is 

N(N - 1) f <rl ~ "'" rg lexp(- /3H)l r~  ~ "'" rN ~ dr3 ~ "'" dr~ ~ 
g(rl~ (18) 

p2 f <riO ... r g l e x p ( _ 3 H ) l r  o... rNO> dr o dr2O dr3O.., drNO 

In (18), the exchange effects are not taken into account; a partial justification 
for this neglect will be given in Section 5. It is convenient to split the total 
Hamiltonian H into 

W is defined by (1) and H0 by 

H 0  ~ - - - -  

H = Ho + W (19) 

h2 ~ ( Ze)2 
2M A~ + - -  (20) 

t = 1  r12 

In all regions of configuration space that significantly contribute to the 
denominator of (18), the potentials are regular, and therefore this denomi- 
nator can be related to the Wigner-Kirkwood expansion of  the free 
energy (1~.7); to order h 2, 

f < r ~  ~ ... rN~ ~ . . . . . .  FNO> dr1 o dru o 

h2/32=(Ze)~P ] 
= A-aNQ 1 - N ~ ] (21) 

where Q is the classical configuration integral (4). 
For the numerator of (18), as explained in the introduction, we must use 

a modified expansion, which allows for the singularity of (Ze)2/r12 in (20), 
since we are precisely interested in small r12 values. However, W is regular in 
all regions of configuration space that significantly contribute to the numer- 
ator of (18), and we can replace W by its Taylor expansion to second order 
around the configuration-space point (0,0, r3~176 since H is not 
diagonal in configuration space, we must now expand W with respect to all 
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coordinates. To second order in the coordinates, we obtain 

exp ( - f iH)  -- exp[-f lW(0,  0, r3~ rN~ 

N 

- - ~ - . (  �9 - R~)  

1 
N 02 W 

R~)(r s Rj)] e x p ( -  ~'Ho) + ?" ~.,~g--1 ~'_ ~r~ ~rj: (ri - 

N 

+ f: -~-r~" " R~)] 
N 

• exp[-(~" - e ) H o ] [ ~  ~W 

where R1 = R2 = 0 and 11~ = rfl (i = 3,..., N). In (22), since 

W(0, 0, r3 ~ ..... Lv ~ 

is a c-number, exp( - f lW)  could be factorized out; the derivatives of W have 
to be taken at the point (0, 0, rf , . . . ,  r g )  and are also c-numbers. In the 
numerator of (18), some terms from (22) vanish because of the rotational 
invariance of W(0, 0, r3~ rN ~ and of rio. In the remaining matrix elements, 
the contributions of the center of mass of particles 1 and 2 and the contribu- 
tions of particles 3 to N can be factorized out and explicitly computed (the 
expansion with respect to these coordinates will generate an expansion in 
powers of the thermal wavelength A). Furthermore, for the derivatives of W 
appearing in (22), we can again use (8), (10), and similar expressions for the 
derivatives with respect to the other coordinates. Finally, the numerator of 
(18) becomes (for brevity, we sometimes drop the subscripts 1, 2, and call r 
the relative coordinate r12 and A the corresponding Laplacian) 

f <rl ... rNO[exp(--fiH)lrl ~ ... rN ~ dr3 ~ ... dr~ ~ 

= { f  exp[-3W(O, O, ra~176 dra~ ... drN ~ 

•  + 

rr(Ze)2Pe3 (Jo d, ~r~2  exp [ - ( f l  - ~ - ) ( - -~  A + Z2e21] 
r / j  

x r2exp[-l"(-h----MA+Z2e2)] r~ (23) 
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Using (21) and (23) in (18), we find, to second order in h and in the 
operator r, 

hz[3%r(Ze12p ] c[4~r~hZ] 3'z  (ro) = 1 + I e 

x r ~ exp -/3 - - ~ A  + r + ~ r 2  r o (24) 

where C is defined by (12) from the classical pair correlation function. The 
calculation of g(r) is now reduced to a two-body problem, the evaluation of 
the matrix element in (24). 

Let us note that, if we had taken for W the whole potential and had 
expanded it around (rl ~ r2 ~ r3~ rN~ we would have obtained the usual 
Wigner-Kirkwood expansion. The main departure from this approach has 
been to put the singular term (Ze)2/r~2 into Ho. Furthermore, since r~ is 
assumed to be small, we obtained a simplification by expanding W around 
(0, 0, r3~ rN ~ rather than (rl ~ r2 ~ r3 ~ ..... rN~ but this latter step is not 
an essential one. 

4. S E M I C L A S S I C A L  A P P R O X I M A T I O N  A N D  PATH INTEGRALS 

We now turn to the evaluation of the matrix element in (24). The r 2 part 
of the effective potential was obtained as a perturbation and is to be treated 
as such. Unfortunately, even in a pure Coulomb potential (Ze)2/r, no simple 
explicit exact expression exists for the density matrix element that is needed 
here and we must resort to approximations. 

Let us first study the zero-density limit, in which (24) reduces to 

We are interested in the small-A case [here "smal l "  t means I << [3(Ze) 2, and 
it must be noted that this almost classical limit is reached for low tempera- 
tures]. The standard approach for calculating (25) is to use the WKB approx- 
imation. When r ~ is small, the most important factor in go(r ~ is obtained by 
multiplying the probability exp(-[3vZ/M) that two nuclei have a relative 
velocity v by the Coulomb barrier WKB penetration factor exp(-2rrZ2e2/hv) 
and integrating that product over v. If the temperature is low enough, the 
integrand has a sharp maximum, the Gamow peak, the value of which 
exp[-(27~rz~Z4e4M/4h2) 1r is the dominating factor in go(r~ A more precise 
result can be obtained by using the WKB method three-dimensional exten- 
sion. (17~ An alternative equivalent procedure is to express (25) in terms of 
Coulomb wave functions and to make suitable approximations for these 
wave functions. Here, we shall use a third approach still equivalent to the 



Pair Correlation Function in a Dense Plasma 365 

previous ones, based on path integrals (see, e.g., Ref. 18). This approach is 
especially convenient for treating the r 2 perturbation term of (24). We shall 
first, however, consider the simpler case (25). 

The path integral expression for the density in a pure Coulomb poten- 
tial is 

= f  ~ r e x p [ - l ~ n d t ( M i : : + Z ; e : ) ]  (26) 

where the functional integral is to be taken on all paths r(t) that go from r ~ 
to r ~ in a " t i m e "  fib. The equivalent of the WKB approximation is to keep in 
(26) only the paths in the neighborhood of the one that minimizes the integral 
in the exponential; along that path, this integral is the action S(r ~ r~ fib) of 
a particle of mass M/2 following a classical trajectory from r ~ back to r ~ in a 
time/3h, in the potential with the reverse sign - (Ze)2 /r .  Taking also into 
account the contributions of the neighboring paths (~9) gives the semiclassical 
approximation (20, 21) 

(rO exp[ ,( + 
(27) 

where Det] ( -~2S/~r ,  ' ~r~)o] is a 3 x 3 determinant built with the second 
derivatives of S(r', r";/3h) with respect to the Cartesian components r~' and 
r ~ ( ~ , f i =  1 ,2 ,3)  a t r ' = r "  = r  ~ 

The explicit evaluation of (27) is performed by computing the action 
along the appropriate ellipse (solution of Kepler's problem). The ellipse arc 
that gives the least action S(r ~ r~ reduces to a radial line segment on 
which the particle goes outward away from r ~ and inward back to r ~ A 
parametric representation for this path r(t), using the auxiliary parameter ~:, 
is 

t = (MA3/2Z2e2)l/2(~ - sin ~), r = A(1 - cos ~:) (28) 

where 2A is the aphelion value of r. Let ~:o (0 < ~:o < ~r) be the initial value 
of  ~:, and 2~r - ~:o its final value. The equations that determine ~:0 and A as 
functions of r ~ and fih are 

fih = (MA3/ZZ2e2)I/2(2~r - 2~:o + 2 sin ~:o), r ~ = A(1 - cos ~:o) (29) 

and the action is readily obtained in terms of ~:o and A by using (28) in 

S(r ~ r~ = {dr]2 ( )2 ~dt t + dt (30) 



366 B. Jancovici 

[It may be of interest to note that, in the limit r ~ --~ 0, the aphelion value of 
r, which is 2A = (4h2t~2Z2e2/Tr2M) ~13, coincides with the turning point at the 
Gamow peak incident energy in the WKB approach.] The calculation of the 
second derivatives of S in (27) is more tedious, since we must consider true 
ellipses before going to the limit of a line segment. We omit the details and 
only quote the result from (25) and (27): 

go(r ~ = (Tr - ~:o + sin ~o)3/2(sin ~:o)-a/2[3(~r - ~:o)sin ~:o 

+ (1 - cos  ~o)(5 + cos  ~o)] - ~ 2  

• exp[-(MZZe2A/2h2)lI2(3~r - 3~:o - sin ~:o)] (31) 

where ~:o and A are defined by (29). More explicit expressions are obtained by 
expansions in the large- and small-r ~ limits. The large-r limit (we now drop 
the superscript 0) is obtained for ~r - ~:o << 1. We then recover the classical 
result and the Wigner-Kirkwood correction to it (9~ 

[ h21~a(Ze)~ ] fi(Ze)2 + - -  +... when r--+ ~ (32) go(r) = exp - ~  12Mr 4 

The "smal l" - r  limit is obtained for ~:o << 1. This limit must be understood 
with some caution, since the quasiclassical approximation breaks down near 
the singularity of the Coulomb potential at those very small values of r that 
are of the order of the ionic Bohr radius h2/M(Ze) 2 and these values of r 
must be excluded here. We find 

31/2(4rr)u3 [(h2f32Z2~/M) ~/3 ] 
go(r) = 12 +""  

x exp[ -[27~r2~Z4e4M~/al 4h 2 ] + 4t-~---ff~-- )'[MZ2e2r~/2+... 1 (33) 

when 

h21M(Ze) 2 << r << [f~2J~(Ze)~lmF 3 

We now turn to the evaluation of (24) with the r 2 perturbation included. 
This additional potential makes two changes in the action: on the one hand, 
the path is changed, and on the other hand, the additional potential must be 
included in the action integrand. Since, however, the action is stationary 
under variations of the path, in first-order perturbation theory it is enough 
to take into account the second change only and thus to add to (30) a term 

1r( Ze)2 o f ~ r 2 dt 3S(r ~ r~ flh) = 3 

[M(Ze)211,2AT,2 (2~-~o (1 - cos ~)a d~ (34) 1Tp 

= Y ( - - 2 ~ j  Jr o 
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where the integral has been computed by using for r(t) the unperturbed path 
(28). The parameters A and ~:0 are still given by (29). A perturbation term 
must also be added to the second derivatives of the action. Using again (27) 
with the addition of 7r(Ze)2pr2/3 in the potential, we finally obtain for (24), 
in the small-r limit, 

when 

[' 6) 
/2\1/3 2 273 / h2 \2/3 ] 

x exp[C - I~ [~r) ( / 3 Z e ) '  [M-----~Tee2) pJgo(r) (35) 

h2/M(Ze) 2 << r << [h2~2(Ze)2/M] 1/3 

where C is given by (17) and go(r) by (33). 
Since the term of order h 4/3 in the exponential of (35) comes from 3S, 

i.e., from the r 2 term that has been treated as a perturbation in (23), a 
condition of validity of (35) is 

(5/12)(2/rr)l/a(flZ2e2)713(h2/MZ2e2)~/ap << 1 

or equivalently O.025Fs/a(~/a) 4/3 << 1 (36) 

(36) must be considered as a more precise form of our assumption that )~/a 
should be "small ." Similarly, the term of order h 2 in the first bracket of (35) 
must be small compared to 1; this condition, however, is automatically 
satisfied as a consequence of (36) and of our earlier assumption s > 1. 

If  we omit these corrections of order h 4/3 and h 2, (35) reduces to a 
simpler form, which had been previously assumed on heuristic grounds(2,~: 

g(r) = eCgo(r) (37) 

where C is still defined by (12) from the classical pair correlation function 
and where go(r) is still the dilute plasma quantum pair correlation function. 
This approximate result (37) is the solution of the quantum mechanical two- 
body problem for a pair of particles interacting through the truncated 
classical potential of mean force (Z2e2/r) - (C/E). In the present paper, (37) 
appears as the zeroth-order result in a systematic expansion method, the next 
step of which gives (24) and (35). Within that next order of approximation, 
it is still valid to consider that particles 1 and 2 interact through the classical 
potential of mean force, in which, however, we now keep one more term 
~rZ2e2or2/3 [and there is also a further correction of order h 2 in the first 
bracket of (24)]. Yet, it must be pointed out that in higher orders of approxi- 
mation it will no longer be possible to reduce the many-body problem to a 
two-body tunneling through some effective potential; it is likely that the 
fluctuations of the potential will have to be taken into account. 
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5. EXCHANGE EFFECTS 

Here we try to justify the neglect of  exchange effects in the previous 
sections. We only consider the two-body prob lem in a pure  Cou lomb  poten-  
tial. The exchange contr ibut ion to g(r  ~ is dominated  by 

e x p [ -  h -  1S(r ~ - r ~ 

N o w  the act ion S must  be computed  along an ellipse arc which goes f rom 
r ~ to - r  ~ in a t ime fih; the major  axis of  the ellipse, which is perpendicular  to 
r ~ will be taken as the x axis. A paramet r ic  representat ion of  the pa th  in 
Cartes ian coordinates  r = (x, y) is 

t = (MA3/2Z2e2) l / 2 (~  - E sin ~:), x = A(cos ~ - E), y = A(1 - ~2)1/2 sin ~: 
(3s) 

where E is the ellipse eccentricity. The  endpoints  of  the pa th  are paramet r ized  
by ~o and 2~r - ~o, and therefore the equat ions that  determine ~o, A, and E 
a r e  

f3h = (MA3/2Z2e2) l /2(2rr  - 2~o + 2c sin ~:o) 

0 -- A(cos ~o - "), r ~ = A(1 - E2) 1/2 sin ~:o (39) 

The  act ion is easily found to be 

S(r ~ - r ~  = (MAZ2e2/2)I /2(37r  - 3~o - , sin ~:o) (40) 

In  the small-r  ~ limit, one obtains f rom (38) and (39) 

exp[ - h - 1S(r, - r;/3h)] = e x p [ -  (2%r2f iZ4e~M/4h~) ~13 

+ 4 ( M Z 2 e 2 r / 2 h 2 )  ~/2 +.- .]  (41) 

when 

l i 2 / M ( Z e )  2 << r << [h2f i2(Ze)2/M] 113 

A compar i son  of  (41) with the corresponding exponential  in the direct te rm 
(33) shows that  the coefficient of  the large te rm [M(Ze)2r /h2]  112 is ~/2 times 
larger in the direct term than  in the exchange term. Therefore,  the exchange 
exponential  (41) can be safely neglected when compared  to the direct expo- 
nential  (33). 

6. PYCNONUCLEAR REACTION RATE 

In  a stellar medium,  nuclear reactions will occur when two nuclei touch 
one another .  The  number  of  reactions per  unit  vo lume and unit  t ime is 
expected to be p ropor t iona l  to o2g(r) ,  where r is now the nuclear diameter .  
The  reaction rate is said to be enhanced by a factor  g(r ) /go(r ) ,  where go(r)  
is the dilute p lasma pair  correlat ion function. This factor  can be considered 
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as describing the screening of the Coulomb barrier between two nuclei by 
the other particles. I f  the medium is dense enough for the enhancement factor 
to be large, nuclear reactions may occur at a fairly low temperature; these 
reactions, which result from high density rather than high temperature, are 
termed pycnonuclear. 

In the present paper, we have confirmed that, in lowest order of approxi- 
mation, the enhancement factor is exp C; we give a numerical expression for 
C in (17). We have also computed corrections to this lowest order result, 
obtaining the enhancement factor g(r)/go(r) as given in (35). Unfortunately, 
our derivation is valid only if these corrections are small. Yet, the evaluation 
of these corrections has provided us with a condition (36) for the validity of  
the approximations. Furthermore, we may note that the first corrections to 
the simple formula exp C tend to make the enhancement factor smaller. 

As a numerical example, let us consider a stellar plasma of pure C 12, 
at a temperature 108 K and a density 108 g/cm 3. Then, Z - 5 x 10 -12 cm, 
a = 3.6 x 10 -11 cm, P = 16.6; O.025FS/3(h/a) 4/a = 0.19 and condition (36) 
is reasonably satisfied. The nuclear diameter is in the range required in (35), 
since 

h2/M(Ze)  2 = 6.7 x 10 -la cm << r = 5.5 x 10 -la cm 

<< [li2~2(Ze)2/M]l13= 1.3 x 10 -11 cm. 

We then find, from (17), C = 18.2, from the simplified formula (37) an 
enhancement factor exp C = 8 x 10 v, and from the more complete formula 
(35) a corrected enhancement factor 6.6 x 107 (practically, this slight correc- 
tion comes only from the term of order h4/3; the correction of order h 2 is 
entirely negligible). 

In two recent papers (22,23~ about the nuclear reaction rate enhancement 
problem, approximations have been used that differ from ours; we believe 
our method of approximation to be more systematic. 
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